

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 125 (2004) 63-66

www.elsevier.com/locate/jfluchem

Stereoselective synthesis of trifluoromethylated vinyl- and dienylphosphonates with γ -alkoxycarbonyl moiety

Yanchang Shen^{*}, Ping Li

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 1 September 2003; received in revised form 14 October 2003; accepted 16 October 2003

Abstract

Trifluoromethylated vinyl- and dienylphosphonates with γ -alkoxycarbonyl moiety have been synthesized via sequential transformations of bisphosphonates in 68–76% (three steps) yields with Z-isomers exclusively or predominantly. © 2003 Elsevier B.V. All rights reserved.

Keywords: Trifluoromethylated vinylphosphonates; Trifluormethylated dienylphosphonates; Trifluoroacylated bisphosphonates; Alkoxycarbonyl moiety; Stereoselective synthesis

1. Introduction

In the last several decades, much interest has been attracted to the new synthetic methodologies for the synthesis of functionalized vinylphosphonates, and their synthetic applications have been widely studied [1]. Furthermore, a large number of these compounds have been shown to exhibit biological usefulness [2,3] and are useful building blocks that have been used for the synthesis of hetero- and carbocyclic compounds [1,4,5]. Recently vinylphosphonates bearing an ene moiety are useful intermediates which have been employed in the synthesis of bicyclic compounds and of cadalane and valerenic acid sesquiterpenoids [4,5]. Organofluorine compounds are increasingly being applied in pharmaceuticals, agrochemicals and other fields [6-8] since the introduction of fluorine or trifluoromethyl group into biologically active compounds often gives rise to unique physiological activities [9,10]. However, the methodology for the synthesis of fluorinated vinylphosphonates is still limited [11–15].

2. Results and discussion

In our continuing investigation to explore the new methods for the synthesis of functionalized phosphonates

0022-1139/\$ – see front matter \odot 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2003.10.004

[16–21], herein we report the synthesis of trifluoromethylated vinyl- and dienylphosphonates with γ -alkoxycarbonyl moiety via sequential transformations of bisphosphonates in 68–76% (three steps) yields with Z-isomers exclusively or predominantly (Scheme 1).

Treatment of tetraethyl ethyl-1,1-bisphosphonate (1) with *n*-butyllithium in tetrahydrofuran (THF) afforded the bisphosphoryl-stabilized carbanion (2) which was acylated by the addition of trifluoroacetic anhydride to give trifluoroacylated phosphonate (3). Without isolation, 3 was attacked by organozinc reagents followed by elimination of phosphonic acid anion affording substituted trifluoromethylated vinylphosphonates (4) with γ -alkoxycarbonyl moiety. The results are summarized in Table 1.

When the organozinc compound with a double bond moiety was used, the substituted trifluoromethylated dienylphosphonates were obtained with Z-isomer exclusively (Scheme 2).

The results are listed in Table 2. It is interesting to note that in this reaction only α -position addition product was obtained. The detail mechanism is being pursued.

It has been reported that the 19 F NMR data of similar compounds Z-6 and E-6 are as follows [22].

^{*}Corresponding author. Tel.: +86-21-64163300;

fax: +86-21-64166128.

E-mail address: shenyc@mail.sioc.ac.cn (Y. Shen).

If the trifluoromethyl group is *trans* with respect to the phenylsulfonyl group, the chemical shifts of the trifluoromethyl group appear upfield (*E*-**6**), while those *cis* with respect to the phenylsulfonyl group are shifted downfield (*Z*-**6**). Hence, we assume that CF₃ signal of *E*-**4f** is shifted upfield (-61.5 ppm) while that of compound *Z*-**4f** is shifted downfield (-59.5 ppm). Similarly in other products only one isomer was obtained exclusively and their CF₃ signals are located in the range of -59.5 to -60.2 ppm. Hence, the configurations of other products could be ascertained as *Z*-isomers.

Similarly, the CF₃ signals of **5a** and **5b** are located at -56.5 ppm, hence the configurations of **5a** and **5b** could be also ascertained as Z-isomers.

The stereochemical results may be rationalized as shown in Scheme 3. The mechanism for the formation of 4 is analogues to that of the bisphosphonates reported in the literature [23] (Scheme 3).

Table 1 Trifluoromethylated vinylphosphonates prepared

Compound	Х	Yield (%) ^a	Ratio $(Z:E)^{b}$
4a	CO ₂ Me	76	100:0
4b	CO_2Et	68	100:0
4c	CO_2Pr^i	69	100:0
4d	CO_2Bu^t	73	100:0
4e	CO ₂ CMe ₂ Et	71	100:0
4f	CO ₂ CH ₂ CF ₃	75 ^c	85:15

^a Isolated yields.

^b The ratios of *E*- and *Z*-isomers are estimated on the basis of 19 F NMR data.

^c Z/E mixture.

Table 2			
Trifluoromethylated	dienylphos	phonates	prepared

• • •		
Х	Yield (%) ^a	Ratio (Z:E) ^b
CO ₂ Me CO ₂ Et	72 70	100:0 100:0
	X CO ₂ Me CO ₂ Et	X Yield $(\%)^a$ CO ₂ Me 72 CO ₂ Et 70

^a Isolated yields.

^b No E-isomer was detectable by TLC or ¹⁹F NMR spectra.

Scheme 3.

The reaction is initiated by nucleuophilic attack of organozinc reagents on the carbon-oxygen double bond of the carbonyl group, forming two diasteroisomeric betaines 7a and 7b in equilibrium. The size of reactive groups is $PO_3Et_2 > CH_2X > CF_3 > CH_3$. Since the intermediate 7a involves an eclipsed orientation of two pairs of 'small/large' substituents (CH₃/CH₂X, CF₃/PO₃Et₂), this conformer should be favorable relative to the stereoisomer **7b**, which contains unfavorable 'large/large' (PO3Et2/CH2X) nonbonding interactions. Therefore, the stereoselectivity of olefination in our cases is a function of the conformational equilibrium of the adducts. Each of these intermediates decomposes via a syn-elimination, affording alkenes Z-4 or E-4. In our case, formation of isomer 7a will be favored over isomer 7b and the Z-isomer was obtained exclusively or predominantly.

In summary this methodology provides a convenient synthesis of trifluoromethylated vinyl- and dienylphosphonates with γ -alkoxycarbonyl moiety in 68–76% (three steps) yields with Z-isomers exclusively or predominantly.

3. Experimental

All boiling points are uncorrected. The IR spectra of liquid products were obtained as films on a Digilab FTS-20E spectrometer. ¹H NMR spectra were recorded on a Bruker AM-300 (300 MHz) spectrometer (δ values in ppm from tetramethylsilane, in CDCl₃, *J*-values are given in Hz). The published ¹⁹F NMR spectra were taken on a

Varian EM-360 (60 MHz) spectrometer and recalculated using the standard chemical shift of reference δ (F) (CF₃CO₂H) -76.5 ppm with respect to δ (CFCl₃) 0.00 ppm. Mass spectra were measured on a Finnigan GC-MS-4021 mass spectrometer.

Tetraethyl ethyl-1,1-bisphosphonate (1) was prepared according to the known method [24].

3.1. General procedure for the preparation of substituted trifluoromethylated vinylphosphonates

Treatment of tetraethyl ethyl-1,1-bisphosphonate (1)(0.6 g, 2 mmol) with *n*-butyllithium (2.2 mmol in 2 ml hexane) in absolute THF (25 ml) at -78 °C under nitrogen gave the phosphoryl-stabilized carbanion 2, which was stirred at -78 °C for 0.5 h. under nitrogen. Trifluoroacetic anhydride (0.28 ml, 2 mmol) was added to it in one portion. After stirring at -78 °C for 1 h, the reaction mixture was allowed to warm to 20 °C and the organozinc reagents [6 mmol, prepared from 6 mmol of bromoacetic ester and 6 mmol (0.39 g) of zinc powder]¹ was added to the mixture, which was stirred for another 4 h. The reaction mixture was poured into 2N HCl solution (10 ml) and the water layer was extracted with dichloromethane $(4 \text{ ml} \times 20 \text{ ml})$. The combined organic layer was washed with water $(2 \text{ ml} \times 10 \text{ ml})$ and dried over Na₂SO₄. Evaporation of the solvent gave a residue, which was purified by column chromatography eluting with petroleum ether (60–90 $^{\circ}$ C): ethyl acetate (4:1) to give the product **4**.

3.1.1. Diethyl 3,3,3-trifluoro-2-(methoxycarbonylmethyl)-1-methyl-prop-1-enyl-phosphonate (**4***a*)

Yield: 76%; bp = 100 °C/0.8 mmHg; Z:*E* = 100:0. IR (film) (cm⁻¹): 2990, 1750, 1540, 1320, 1250, 1130, 1020, 970. ¹H NMR (CDCl₃/TMS): δ 1.26 (t, *J* = 7.1 Hz, 6H), 2.04 (dq, *J* = 14.5, 2.4 Hz, 3H), 3.64 (s, 3H), 3.91 (s, 2H), 4.10–3.98 (m, 4H). ¹⁹F NMR (CDCl₃/TFA): δ –59.8 (s, 3F). MS *m*/*z* (rel. int.): 319 (*M*⁺ + 1, 1), 318 (*M*⁺, 1), 286 (26), 258 (36), 231 (36), 230 (49), 203 (100), 180 (79). Anal. calcd. For C₁₁H₁₈F₃O₅P (318.22): C, 41.52: H, 5.70. Found: C, 41.26; H, 5.60%.

3.1.2. Diethyl 3,3,3-trifluoro-2-(ethoxycarbonylmethyl)-1-methyl-prop-1-enyl-phosphonate (**4b**)

Yield: 68%; bp = 102 °C/0.8 mmHg; Z:E = 100:0. IR (film) (cm⁻¹): 2990, 1740, 1320, 1200, 1030, 970. ¹H NMR (CDCl₃/TMS): δ 1.23 (t, J = 7.2 Hz, 6H), 1.31 (t, J = 7.1 Hz, 3H), 2.09 (dq, J = 14.6, 2.5 Hz, 3H), 3.95 (s, 2H), 4.18–4.04 (m, 6H). ¹⁹F NMR (CDCl₃/TFA): δ –60.2 (s, 3F). MS m/z (rel. int.): 333 (M^+ + 1, 4), 287 (26), 203 (49), 202 (76), 166 (100), 135 (38), 103 (40). Anal. calcd. For $C_{12}H_{20}F_3O_5P$ (332.25): C, 43.38: H, 6.07. Found: C, 43.18; H, 6.10%.

3.1.3. Diethyl 3,3,3-trifluoro-2-(i-propoxycarbonylmethyl)-1-methyl-prop-1-enyl-phosphonate (**4***c*)

Yield: 69%; bp = 120 °C/0.8 mmHg; Z:*E* = 100:0. IR (film) (cm⁻¹): 2990, 1740, 1450, 1320, 1200, 1030, 970. ¹H NMR (CDCl₃/TMS): δ 1.20 (d, *J* = 6.2 Hz, 6H), 1.30 (t, *J* = 7.1 Hz, 6H), 2.08 (dq, *J* = 14.7, 2.4 Hz, 3H), 3.92 (s, 2H), 4.12–4.05 (m, 4H), 4.99 (hept, *J* = 6.2 Hz, 1H). ¹⁹F NMR (CDCl₃/TFA): δ –59.5 (s, 3F). MS *m/z* (rel. int.): 347 (*M*⁺ + 1, 91), 305 (39), 287 (100), 259 (23), 231 (26), 203 (24), 202 (25), 43 (49). Anal. calcd. For C₁₃H₂₂F₃O₅P (346.28): C, 45.09: H, 6.40. Found: C, 45.00; H, 6.38%.

3.1.4. Diethyl 3,3,3-trifluoro-2-(t-butoxycarbonylmethyl)-1-methyl-prop-1-enyl-phosphonate (**4d**)

Yield: 73%; bp = 125 °C/0.8 mmHg; Z:*E* = 100:0. IR (film) (cm⁻¹): 2990, 1740, 1460, 1320, 1250, 1130, 1030, 970. ¹H NMR (CDCl₃/TMS): δ 1.30 (t, *J* = 7.1 Hz, 6H), 1.40 (s, 9H), 2.07 (dq, *J* = 14.6, 2.2 Hz, 3H), 3.85 (s, 2H), 4.11–4.05 (m, 4H). ¹⁹F NMR (CDCl₃/TFA): δ –59.8 (s, 3F). MS *m*/*z* (rel. int.): 304 (18), 287 (100), 260 (78), 259 (44), 231 (48), 204 (21), 203 (28), 57 (53). Anal. calcd. For C₁₄H₂₄F₃O₅P (360.31): C, 46.67: H, 6.71. Found: C, 46.37; H, 6.76%.

3.1.5. Diethyl 3,3,3-trifluoro-2-

[(1,1-dimethylpropoxycarbonyl)methy]-1-methyl-prop-1-enyl-phosphonate (**4e**)

Yield: 71%; bp = 120 °C/0.8 mmHg; Z:*E* = 100:0. IR (film) (cm⁻¹): 2980, 1740, 1390, 1250, 1130, 1030, 970. ¹H NMR (CDCl₃/TMS): δ 0.82 (t, *J* = 7.5 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 6H), 1.36 (s, 6H), 1.72 (q, *J* = 7.5 Hz, 2H), 2.05 (dq, *J* = 14.6, 2.0 Hz, 3H), 3.86 (s, 2H), 4.10–4.03 (m, 4H). ¹⁹F NMR (CDCl₃/TFA): δ –59.8 (s, 3F). MS *m*/*z* (rel. int.): 305 (23), 287 (100), 260 (57), 259 (46), 203 (37), 202 (23), 71 (65), 43 (35). Anal. calcd. For C₁₅H₂₆F₃O₅P (374.33): C, 48.13: H, 7.00. Found: C, 47.96; H, 6.85%.

3.1.6. Diethyl 3,3,3-trifluoro-2-

[(1,1,1-trifluoroethoxycarbony)methyl]-1-methyl-prop-1-enyl-phosphonate (**4f**)

Yield: 75% (*E/Z* mixture); bp = 115 °C/0.8 mmHg; Z:*E* = 85:15. IR (film) (cm⁻¹): 2990, 1770, 1420, 1320, 1140, 970. ¹H NMR (CDCl₃/TMS): δ 1.31 (t, *J* = 7.1 Hz, 6H), 1.98 (dq, *J* = 15.3, 2.5 Hz, 0.15 × 3H), 2.10 (dq, *J* = 14.5, 2.4 Hz, 0.85 × 3H), 4.18–4.03 (m, 6H), 4.35 (q, *J* = 8.2 Hz, 0.15 × 2H), 4.47 (q, *J* = 8.4 Hz, 0.85 × 2H). ¹⁹F NMR (CDCl₃/TFA): δ –59.5 (s, 0.85 × 3F), –61.5 (s, 0.15 × 3F), –72.5 (t, *J* = 8.4 Hz, 0.85 × 3F), –61.5 (s, 0.15 × 3F), –72.5 (t, *J* = 8.4 Hz, 0.85 × 3F), –73.2 (T, *J* = 8.4 Hz, 0.15 × 3F). MS *m*/*z* (rel. int.): 386 (*M*⁺, 8), 385 (*M*⁺ – 1, 4), 287 (46), 258 (49), 230 (55), 203 (35), 202 (100), 138 (37). Anal. calcd. For C₁₂H₁₇F₆O₅P (386.22): C, 37.32: H, 4.44. Found: C, 37.22; H, 4.40%.

¹ The effect of the amount of organozinc reagent used was investigated with tetraethyl ethyl-1,1-bisphosphonate (1) and $BrZnCH_2CO_2CH_2CF_3$ as reactants. When the amount of organozinc reagent used was increased from 2 to 6 mmol, the yield was increased from 56 to 75%.

3.2. General procedure for the preparation of substituted trifluoromethylated dienylphosphonates

The procedure is same with aforementioned method.

3.2.1. Diethyl 3-methoxycarbonyl-2-trifluoromethyl-1-methyl-penta-1,4-dienylphosphonate (5a)

Yield: 72%; bp = 130 °C/0.8 mmHg; Z:*E* = 100:0. IR (film) (cm⁻¹): 2990, 1750, 1440, 1200, 1020, 970, 800. ¹H NMR (CDCl₃/TMS): δ 1.30 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H), 2.10 (dq, *J* = 14.4, 2.2 Hz, 3H), 3.70 (s, 3H), 4.16–4.04 (m, 4H), 5.22–5.19 (m, 1H), 5.26–5.24 (m, 1H), 6.07–6.04 (m, 1H), 6.17–6.12 (m, 1H). ¹⁹F NMR (CDCl₃/ TFA): δ –56.5 (s, 3F). MS *m*/*z* (rel. int.): 346 (*M*⁺ + 2, 9), 345 (*M*⁺ + 1, 56), 314 (16), 313 (100), 312 (25), 284 (14), 228 (11), 127 (11). Anal. calcd. For C₁₃H₂₀F₃O₅P (344.26): C, 45.36: H, 5.86. Found: C, 45.61; H, 5.71%.

3.2.2. Diethyl 3-ethoxycarbonyl-2-trifluoromethyl-1-methyl-penta-1,4-dienylphosphonate (5b)

Yield: 70%; bp = 132 °C/0.8 mmHg; Z:*E* = 100:0. IR (film) (cm⁻¹): 2990, 1750, 1640, 1320, 1190, 1020, 970, 800. ¹H NMR (CDCl₃/TMS): δ 1.21 (t, *J* = 7.2 Hz, 3H), 1.34–1.26 (m, 6H), 2.10 (dq, *J* = 14.2, 2.1 Hz, 3H), 4.24– 4.06 (m, 6H), 5.25–5.17 (m, 2H), 6.04–6.01 (m, 1H), 6.18– 6.15 (m, 1H). ¹⁹F NMR (CDCl₃/TFA): δ – 56.5 (s, 3F). MS *m*/ *z* (rel. int.): 358 (*M*⁺, 1), 312 (36), 284 (35), 256 (31), 228 (100), 127 (43), 111 (31), 57 (53). Anal. calcd. For C₁₄H₂₂F₃-O₅P (358.29): C, 46.93: H, 6.19. Found: C, 46.92; H, 6.23%.

Acknowledgements

The authors thank the National Natural Science Foundation of China and Chinese Academy of Sciences for financial support.

References

- [1] T. Minami, J. Motoyoshiya, Synthesis (1992) 333–349, and the references cited therein.
- [2] J.M. Gao, V. Martichonok, G.M. Whiteside, J. Org. Chem. 61 (1996) 9538–9540.
- [3] A.M. Kawamoto, M.M. Campbell, J. Chem. Soc., Perkin Trans. 1 (1997) 1249–1253.
- [4] T. Minami, T. Utsunomiya, S. Nakamura, M. Okubo, N. Kitamura, J. Okada, J. Ichikawa, J. Org. Chem. 59 (1994) 6717–6727.
- [5] T. Okauchi, T. Kakiuchi, N. Kitamura, T. Utsunomiya, J. Ichikawa, T. Minami, J. Org. Chem. 62 (1997) 8419–8424.
- [6] J.T. Welch, Tetrahedron 43 (1987) 3123-3197.
- [7] J.T. Welch, S. Eswarakrishnam, Fluorine in Bioorganic Chemistry, Wiley, New York, 1991.
- [8] G. Resnati, Tetrahedron 49 (1993) 9385–9445.
- [9] B.E. Smart, Chem. Rev. 96 (1996) 1555–1823.
- [10] G. Resuati, V.A. Soloshnok, Tetrahedron 52 (1996) 1–330.
- [11] G.M. Blackburn, M.J. Parratt, J. Chem Soc., Perkin Trans. 1 (1986) 1417–1424.
- [12] Y. Shen, Q. Liao, W. Qiu, J. Chem. Soc., Perkin Trans. 1 (1990) 695–697.
- [13] W. Cen, Y. Ni, Y. Shen, J. Fluorine Chem. 73 (1995) 161-164.
- [14] Y. Shen, P. Li, J. Ni, J. Sun, J. Org. Chem. 63 (1998) 9396– 9398.
- [15] Y. Shen, Y. Zhang, J. Fluorine Chem. 108 (2001) 64–71.
- [16] Y. Shen, P. Li, J. Ni, J. Org. Chem. 63 (1998) 9396-9398.
- [17] Y. Shen, Q. Liao, W. Qiu, J. Chem. Soc., Perkin Trans. 1 (1990) 695–697.
- [18] Y. Shen, M. Qi, J. Chem. Soc. Perkin Trans. 1 (1995) 993-995.
- [19] Y. Shen, G.-F. Jiang, Synthesis (2000) 502–504.
- [20] Y. Shen, Y. Zhang, Z. Zhang, Synthesis (2000) 1535-1538.
- [21] Y. Shen, Y. Zhang, J. Sun, J. Fluorine Chem. 116 (2002) 157– 161.
- [22] Y. Shen, G. Wang, J. Sun, J. Chem. Soc. Perkin Trans. 1 (2001) 519–522.
- [23] W. Perlikowska, M.J. Mphahlele, T.A. Modro, J. Chem. Soc., Perkin Trans. 2 (1997) 967–970.
- [24] M.-P. Teulade, P. Savignac, E.E. Aboujaoude, S. Lietge, N. Collignon, J. Org. Chem. 304 (1986) 283–300.